Additional Material for
Kampichler C, Platen R (2004) Ground beetle occurrence and moor degradation:
modelling a bioindication system by automated decision-tree induction and
fuzzy logic. Ecological Indicators 4, 99-109
1. Material and Methods / Transformation into
the fuzzy model
2. Appendix A
: Carabid beetles encountered in the study
3. Appendix B
: Fuzzy model derived from main decision tree (Fig. 3a in Kampichler
& Platen 2004)
4. Appendix C
: Fuzzy model derived from the first additional decision tree (boosting)
(Fig. 3b in Kampichler & Platen 2004)
5. Appendix D
: Fuzzy model derived from the second additional decision tree (boosting)
(Fig. 3c in Kampichler & Platen 2004)
Material and Methods
Transformation into the fuzzy model
A decision tree as in Fig. 1b in Kampichler & Platen (2004) is
a classifier with discrete decision criteria. For example, a moor with
50 individuals of species A and with 101 individuals of species B in a
sample of a defined size would be classified as belonging to class X. If
only one specimen of species B was missed, the moor would be assigned to
another class, Y, despite the obvious similarity between the two cases.
Where ecologists have previously drawn this kind of artificially sharp
distinction, they can now draw more realistic boundaries by means of fuzzy
sets. In classical ('crisp') set theory, there are only two possibilities;
either an object is member of a set or is not; thus, the only possible membership
values are 0 and 1. In the example above, the moor has the membership 1
in class X (is a member of the class) and the membership 0 in class Y (is
not a member of the class).The central idea in fuzzy set theory is that
members of a set may have only partial membership, which consequently may
possess all possible values between 0 and 1. The closer the membership of
an element is to 1, the more it belongs to the set; the closer the membership
of an element is to 0, the less it belongs to the set. Let, for example,
the possible numbers of individuals of a species in a defined sample lie
within 0 and 100 ( Fig. A
). Sharp boundaries between sets necessarily mean, that counts that
differ as close as 1 may be assigned to different sets (here, 50 and 51).
Through fuzzy sets, a region of overlap may be defined; numbers around 50
belong to both sets, the respective membership values depending on whether
the observed numbers are lower or larger than 50.
|
Fig A. Example for discrete and fuzzy sets. Membership of the discrete sets "rare" (dotted line) and "frequent" (unbroken line) have a sharp upper and lower boarder, respectively (left), while membership of the fuzzy set "rare" (dotted line) and "frequent" (unbroken line) increase and decrease gradually, respectively (right). |
The decision trees yielded by automated tree induction were broken down
into a set of rules by representing each possible path through the trees
by a rule. (See5 uses a more parsimonious approach for generating rules out
of a tree; however, for a fuzzy model, the rule base must explicitly cover
the entire variable space.) Subsequently, sharp boundaries (e.g., a rule
including the antecedent IF species A <= n versus a rule including IF
species A > n, where n defines a split in the tree) were translated into
fuzzy boundaries (e.g. into rules with the antecedents IF species A is rare
versus IF species A is frequent with an overlapping zone between the sets
"rare" and "frequent" around n) in a manner similar to that demonstrated in
Fig. A. The amount of overlap chosen was based on biological plausibility
and was open to modification while adjusting the model. Fuzzy models can be
tuned by modifying the shape of the fuzzy sets until the model output eventually
fits the desired output. Presence-absence splits in the decision trees were
translated into discrete sets. For development of the fuzzy model, we chose
only 15 of the plots according to a stratified random drawing from the full
list of plots in order to ensure an equal representation of each degradation
stage in the subset; we used the ten plots not chosen for development as
unseen cases for validation of the model (Rykiel 1996).
For a hypothetical example, let there be two species (A and B) and
two fuzzy sets denoting the abundance of A and B ("rare" and "frequent")
( Fig. B
), and let X, Y and Z be three classes of increasing moor degradation.
There are four possible combinations of variable states, and they can be
described by four rules (as it would be if the sets were discrete); let them,
hypothetically, be:
Rule 1: IF species A is rare and species B is rare THEN moor belongs
to class X.
Rule 2: IF species A is rare and species B is frequent THEN moor belongs
to class Y.
Rule 3: IF species A is frequent and species B is rare THEN moor belongs
to class Z.
Rule 4: IF species A is frequent and species B is frequent THEN moor
belongs to class Z.
Logically, rules 3 and 4 could be replaced by the simpler rule IF species
A is frequent THEN moor belongs to class Z, but the procedures involved
in running a fuzzy rule-based model need the explicit addressing of all
possible variable states. Let the observed numbers n of the two species
be n A=10 and nB
=60. In a process called fuzzification (Fig. B
), the observed numbers of individuals of A and B are translated into
membership values in the sets "rare" and "frequent". Of the four rules,
rule 3 and 4 are not activated, since nA
=10 is not a member of the class "frequent", the respective membership
value is 0. Both rule 1 and 2 are activated, because -- due to the fuzzy nature
of the sets -- n B=60 belongs to set "rare"
as well as to set "frequent" and this is a fundamental difference to a rule
base with discrete sets: Whereas in a discrete rule-set each possible combination
of attributes is represented by only one rule, in a fuzzy rule-set several
rules may address the same combination of attributes.
|
Fig. B. Hypothetical example for fuzzy
control consisting of the processes fuzzification, fuzzy inference and
defuzzification. The abundance of species A and B is 10 and 60 individuals,
respectively. See text for detailed description. |
In a process called fuzzy inference (Fig. B
), the membership values of the moor in the classes X, Y and Z are
calculated. This is done by use of the minimum-operator: the lower value
of the membership values of A and B is assigned to the class that is addressed
by the rule (this is the simplest possibility for the logical AND in fuzzy
logic). Subsequently, the results of rule 1 and 2 are merged by use of the
maximum-operator: the higher value of the membership determined by the
different rules is assigned to each class (this is the simplest possibility
for the logical OR in fuzzy logic) (Fig. B
). In a final step called defuzzification (Fig.B
), the result of the fuzzy inference can be transformed (when necessary)
into a discrete output. The method most widely used is to calculate the
centre of gravity of the output polygon and to project it onto the x-axis.
This value can be used for assigning a case (i.e., moor) to a certain class
(e.g., the x co-ordinate of the centre of gravity is closest to class Y,
this means that the moor with nA=10 and
n B =60 is assigned to class Y). Thus,
classes must be expressed at least on an ordinal scale.
The entire process embracing fuzzification, fuzzy interference and
defuzzification is called fuzzy control. The simple example above shows
only a few of the possibilities available for fuzzy control; the operators
used and the shape of the fuzzy sets (trapezoid, triangular, overlapping
vs. non-overlapping etc.) are subject to the expertise of the modeller
(see Bothe (1995) or Zimmermann (1996) for an introduction to fuzzy control).
(See Kampichler & Platen (2004) for references cited
in this text.)
Appendix
Appendix A.
Carabid beetles encountered in the study.
Table A.1. Number of individuals encountered in the 25 study sites
(their degradation stage is given in the column headers).
Species |
1 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
2 |
3 |
3 |
3 |
3 |
3 |
4 |
4 |
4 |
4 |
4 |
5 |
5 |
5 |
5 |
5 |
Abax parallelepipedus (Piller & Mitterpacher,
1783) |
1 |
7 |
|||||||||||||||||||||||
Acupalpus dubius Schilsky, 1888 |
1 |
1 |
1 |
1 |
|||||||||||||||||||||
Acupalpus flavicollis (Sturm, 1825) |
17 |
1 |
1 |
1 |
2 |
||||||||||||||||||||
Acupalpus parvulus (Sturm, 1825) |
1 |
2 |
7 |
||||||||||||||||||||||
Agonum afrum (Duftschmid, 1812) |
1 |
65 |
1 |
||||||||||||||||||||||
Agonum fuliginosum (Panzer, 1809) |
1 |
3 |
3 |
2 |
2 |
25 |
4 |
15 |
1 |
1 |
1 |
1 |
58 |
29 |
24 |
11 |
10 |
44 |
32 |
||||||
Agonum gracile (Gyllenhal, 1827) |
1 |
1 |
1 |
||||||||||||||||||||||
Agonum piceum (Linnaeus, 1758) |
1 |
||||||||||||||||||||||||
Agonum sexpunctatum (Linnaeus, 1758) |
3 |
1 |
1 |
67 |
24 |
||||||||||||||||||||
Agonum thoreyi Dejean, 1828 |
1 |
1 |
3 |
1 |
|||||||||||||||||||||
Agonum versutum (Gyllenhal, 1827) |
1 |
||||||||||||||||||||||||
Agonum viduum (Panzer, 1797) |
11 |
3 |
|||||||||||||||||||||||
Amara aenea (De Geer, 1774) |
1 |
||||||||||||||||||||||||
Amara aulica (Panzer, 1797) |
1 |
||||||||||||||||||||||||
Amara bifrons (Gyllenhal, 1810) |
2 |
1 |
|||||||||||||||||||||||
Amara brunnea (Gyllenhal, 1810) |
1 |
14 |
1 |
38 |
10 |
85 |
|||||||||||||||||||
Amara communis (Panzer, 1797) |
2 |
4 |
4 |
1 |
3 |
51 |
78 |
21 |
|||||||||||||||||
Amara consularis (Duftschmid, 1812) |
1 |
||||||||||||||||||||||||
Amara convexior Stephens, 1828 |
2 |
||||||||||||||||||||||||
Amara familiaris (Duftschmid, 1812) |
1 |
1 |
1 |
1 |
|||||||||||||||||||||
Amara lunicollis Schiödte, 1837 |
1 |
1 |
1 |
86 |
13 |
||||||||||||||||||||
Amara ovata (Fabricius, 1792) |
3 |
1 |
|||||||||||||||||||||||
Amara plebeja (Gyllenhal, 1810) |
2 |
1 |
1 |
1 |
2 |
2 |
1 |
2 |
|||||||||||||||||
Amara similata (Gyllenhal, 1810) |
2 |
1 |
|||||||||||||||||||||||
Amara spreta Dejean, 1831 |
1 |
||||||||||||||||||||||||
Amara tibialis (Paykull, 1798) |
1 |
||||||||||||||||||||||||
Anisodactylus binotatus (Fabricius, 1787) |
1 |
1 |
1 |
||||||||||||||||||||||
Anthracus consputus (Duftschmid, 1812) |
1 |
1 |
|||||||||||||||||||||||
Badister bullatus (Schrank, 1798) |
1 |
||||||||||||||||||||||||
Badister dilatatus Chaudoir, 1827 |
1 |
1 |
4 |
2 |
|||||||||||||||||||||
Badister lacertosus Sturm, 1815 |
1 |
1 |
|||||||||||||||||||||||
Badister sodalis (Duftschmid, 1812) |
21 |
||||||||||||||||||||||||
Bembidion articulatum (Panzer, 1796) |
20 |
||||||||||||||||||||||||
Bembidion assimile Gyllenhal, 1810 |
1 |
1 |
3 |
12 |
7 |
66 |
|||||||||||||||||||
Bembidion biguttatum (Fabricius, 1779) |
2 |
||||||||||||||||||||||||
Bembidion doris (Panzer, 1797) |
1 |
2 |
8 |
1 |
4 |
||||||||||||||||||||
Bembidion gilvipes Sturm, 1825 |
2 |
1 |
|||||||||||||||||||||||
Bembidion guttula (Fabricius, 1792) |
1 |
2 |
1 |
||||||||||||||||||||||
Bembidion humerale Sturm, 1825 |
3 |
1 |
|||||||||||||||||||||||
Bembidion lampros (Herbst, 1784) |
1 |
11 |
11 |
122 |
|||||||||||||||||||||
Bembidion mannerheimii C.R. Sahlberg, 1827 |
1 |
1 |
|||||||||||||||||||||||
Bembidion properans Stephens, 1829 |
44 |
||||||||||||||||||||||||
Bembidion tetracolum Say, 1823 |
1 |
||||||||||||||||||||||||
Bembidion varium (Olivier, 1795) |
1 |
||||||||||||||||||||||||
Blethisa multipunctata (Linnaeus, 1758) |
1 |
3 |
1 |
1 |
|||||||||||||||||||||
Bradycellus csikii Laczó, 1912 |
1 |
2 |
1 |
2 |
|||||||||||||||||||||
Bradycellus harpalinus (Serville, 1821) |
1 |
2 |
1 |
1 |
1 |
4 |
1 |
||||||||||||||||||
Broscus cephalotes (Linnaeus, 1758) |
1 |
||||||||||||||||||||||||
Calathus fuscipes (Goeze, 1777) |
1 |
1 |
2 |
18 |
|||||||||||||||||||||
Calathus melanocephalus (Linnaeus, 1758) |
1 |
2 |
|||||||||||||||||||||||
Calathus micropterus (Duftschmid, 1812) |
2 |
1 |
1 |
1 |
19 |
2 |
3 |
4 |
8 |
||||||||||||||||
Calathus rotundicollis Dejean, 1828 |
1 |
1 |
2 |
||||||||||||||||||||||
Carabus granulatus Linnaeus, 1758 |
1 |
1 |
27 |
7 |
3 |
3 |
19 |
71 |
431 |
53 |
1 |
||||||||||||||
Carabus hortensis Linnaeus, 1758 |
77 |
5 |
2 |
||||||||||||||||||||||
Carabus nemoralis O.F. Müller, 1764 |
6 |
2 |
4 |
6 |
1 |
11 |
1 |
33 |
86 |
||||||||||||||||
Carabus violaceus Linnaeus, 1758 |
1 |
25 |
23 |
4 |
12 |
||||||||||||||||||||
Chlaenius nigricornis (Fabricius, 1787) |
1 |
||||||||||||||||||||||||
Chlaenius tristis (Schaller, 1783) |
2 |
||||||||||||||||||||||||
Clivina fossor (Linnaeus, 1758) |
4 |
11 |
3 |
20 |
|||||||||||||||||||||
Cychrus caraboides (Linnaeus, 1758) |
1 |
1 |
2 |
4 |
2 |
10 |
2 |
||||||||||||||||||
Dromius sigma (Rossi, 1790) |
1 |
||||||||||||||||||||||||
Dyschirius aeneus (Dejean, 1825) |
1 |
||||||||||||||||||||||||
Dyschirius globosus (Herbst, 1783) |
15 |
1 |
7 |
3 |
76 |
9 |
14 |
55 |
5 |
39 |
1 |
27 |
14 |
99 |
14 |
166 |
86 |
||||||||
Dyschirius luedersi Wagner, 1915 |
1 |
6 |
2 |
||||||||||||||||||||||
Elaphrus cupreus Duftschmid, 1812 |
8 |
1 |
10 |
1 |
2 |
10 |
8 |
7 |
2 |
4 |
4 |
9 |
3 |
||||||||||||
Elaphrus riparius (Linnaeus, 1758) |
4 |
||||||||||||||||||||||||
Elaphrus uliginosus Fabricius, 1775 |
1 |
||||||||||||||||||||||||
Epaphius rivularis (Gyllenhal, 1810) |
249 |
5 |
1 |
12 |
16 |
5 |
6 |
1 |
|||||||||||||||||
Epaphius secalis (Paykull, 1790) |
3 |
6 |
1 |
||||||||||||||||||||||
Harpalus affinis (Schrank, 1781) |
1 |
||||||||||||||||||||||||
Harpalus anxius (Duftschmid, 1812) |
1 |
||||||||||||||||||||||||
Harpalus distinguendus (Duftschmid, 1812) |
1 |
||||||||||||||||||||||||
Harpalus latus (Linnaeus, 1758) |
1 |
1 |
2 |
3 |
4 |
1 |
8 |
||||||||||||||||||
Harpalus rufipalpis Sturm, 1818 |
1 |
1 |
1 |
||||||||||||||||||||||
Harpalus signaticornis (Duftschmid, 1812) |
1 |
||||||||||||||||||||||||
Harpalus smaragdinus (Duftschmid, 1812) |
1 |
||||||||||||||||||||||||
Harpalus tardus (Panzer, 1797) |
1 |
1 |
1 |
||||||||||||||||||||||
Harpalus xanthopus winkleri Schauberger,
1923 |
16 |
1 |
1 |
2 |
|||||||||||||||||||||
Leistus ferrugineus (Linnaeus, 1758) |
2 |
1 |
1 |
2 |
2 |
||||||||||||||||||||
Leistus rufomarginatus Duftschmid, 1812 |
4 |
2 |
17 |
3 |
|||||||||||||||||||||
Leistus terminatus (Hellwig in Panzer,
1793) |
1 |
4 |
1 |
5 |
1 |
28 |
27 |
36 |
2 |
3 |
2 |
81 |
22 |
||||||||||||
Loricera pilicornis (Fabricius, 1775) |
5 |
9 |
2 |
1 |
3 |
5 |
147 |
1 |
1 |
48 |
1 |
12 |
5 |
||||||||||||
Microlestes minutulus (Goeze, 1777) |
3 |
1 |
2 |
||||||||||||||||||||||
Nebria brevicollis (Fabricius, 1792) |
1 |
3 |
1 |
1 |
17 |
3 |
121 |
1 |
19 |
1 |
3 |
6 |
3 |
||||||||||||
Notiophilus aquaticus (Linnaeus, 1758) |
1 |
||||||||||||||||||||||||
Notiophilus biguttatus (Fabricius, 1779) |
10 |
11 |
9 |
56 |
|||||||||||||||||||||
Notiophilus palustris (Duftschmid, 1812) |
1 |
2 |
1 |
4 |
4 |
8 |
11 |
11 |
49 |
||||||||||||||||
Oodes helopioides (Fabricius, 1792) |
2 |
2 |
12 |
3 |
1 |
8 |
14 |
14 |
1 |
7 |
6 |
14 |
44 |
28 |
|||||||||||
Oxypselaphus obscurus (Herbst, 1794) |
3 |
3 |
7 |
99 |
25 |
44 |
82 |
20 |
22 |
2 |
226 |
197 |
69 |
8 |
12 |
21 |
12 |
||||||||
Panagaeus cruxmajor (Linnaeus, 1758) |
1 |
||||||||||||||||||||||||
Patrobus assimilis Chaudoir, 1844 |
1 |
6 |
|||||||||||||||||||||||
Patrobus atrorufus (Stroem, 1768) |
3 |
1 |
35 |
10 |
5 |
2 |
15 |
1 |
4 |
16 |
13 |
6 |
|||||||||||||
Poecilus cupreus (Linnaeus, 1758) |
3 |
1 |
3 |
1 |
2 |
||||||||||||||||||||
Poecilus versicolor (Sturm, 1824) |
1 |
1 |
2 |
3 |
1 |
2 |
2 |
||||||||||||||||||
Pseudoophonus rufipes (De Geer, 1774) |
1 |
1 |
6 |
2 |
8 |
4 |
17 |
||||||||||||||||||
Pterostichus anthracinus (Illiger, 1798) |
65 |
35 |
|||||||||||||||||||||||
Pterostichus aterrimus (Herbst, 1794) |
7 |
33 |
6 |
43 |
1 |
2 |
13 |
||||||||||||||||||
Pterostichus diligens (Sturm, 1824) |
2 |
25 |
137 |
75 |
27 |
58 |
68 |
277 |
5 |
194 |
197 |
335 |
50 |
91 |
143 |
51 |
80 |
32 |
45 |
50 |
209 |
||||
Pterostichus guentheri Sturm, 1824 |
1 |
||||||||||||||||||||||||
Pterostichus melanarius (Illiger, 1798) |
1 |
10 |
2 |
1 |
29 |
2 |
2 |
||||||||||||||||||
Pterostichus minor (Gyllenhal, 1827) |
3 |
13 |
9 |
1 |
4 |
31 |
35 |
13 |
19 |
31 |
94 |
19 |
69 |
51 |
2 |
35 |
64 |
15 |
9 |
5 |
96 |
172 |
98 |
50 |
1 |
Pterostichus niger (Schaller, 1783) |
1 |
9 |
1 |
3 |
1 |
25 |
15 |
6 |
4 |
21 |
19 |
304 |
178 |
106 |
111 |
1 |
5 |
18 |
10 |
3 |
|||||
Pterostichus nigrita (Paykull, 1790) |
3 |
9 |
14 |
1 |
1 |
7 |
2 |
13 |
1 |
80 |
3 |
10 |
24 |
17 |
|||||||||||
Pterostichus oblongopunctatus (Fabricius,
1787) |
1 |
3 |
2 |
35 |
5 |
102 |
32 |
141 |
248 |
186 |
|||||||||||||||
Pterostichus rhaeticus Heer, 1837 |
16 |
22 |
19 |
10 |
18 |
4 |
17 |
19 |
34 |
520 |
55 |
99 |
22 |
114 |
4 |
4 |
118 |
372 |
22 |
77 |
21 |
4 |
58 |
20 |
|
Pterostichus strenuus (Panzer, 1797) |
1 |
2 |
2 |
2 |
4 |
3 |
2 |
16 |
5 |
88 |
4 |
2 |
|||||||||||||
Pterostichus vernalis (Panzer, 1796) |
1 |
1 |
2 |
6 |
4 |
2 |
3 |
1 |
|||||||||||||||||
Stenolophus mixtus (Herbst, 1784-1785) |
3 |
2 |
8 |
1 |
2 |
3 |
6 |
9 |
10 |
||||||||||||||||
Stenolophus teutonus (Schrank, 1781) |
1 |
1 |
|||||||||||||||||||||||
Stomis pumicatus (Panzer, 1796) |
2 |
1 |
7 |
1 |
|||||||||||||||||||||
Syntomus truncatellus (Linné, 1761) |
3 |
||||||||||||||||||||||||
Synuchus vivalis (Illigier, 1798) |
1 |
1 |
2 |
||||||||||||||||||||||
Trechoblemus micros (Herbst, 1783) |
1 |
||||||||||||||||||||||||
Trechus obtusus Erichson, 1837 |
1 |
8 |
1 |
1 |
|||||||||||||||||||||
Trechus quadristriatus (Schrank, 1781) |
1 |
||||||||||||||||||||||||
Trichocellus placidus (Gyllenhal, 1827) |
1 |
3 |
53 |
27 |
3 |
3 |
7 |
1 |
|||||||||||||||||
Zabrus tenebrioides (Goeze, 1777) |
1 |
Table A.2. Ecological characteristics of encountered species.
Species |
Prefered habitat types |
Ecological tolerance |
Trophic Guild |
Feeding Items |
Abax parallelepipedus (Piller & Mitterpacher,
1783) |
moist deciduous forests |
stenotopic a |
carnivorous |
|
Acupalpus dubius Schilsky, 1888 |
vegetationless river banks |
stenotopic a |
unclear |
|
Acupalpus flavicollis (Sturm, 1825) |
vegetationless river banks |
intermediate c |
unclear |
|
Acupalpus parvulus (Sturm, 1825) |
vegetationless river banks |
stenotopic a |
unclear |
|
Agonum afrum (Duftschmid, 1812) |
eutrophic mires |
stenotopic a |
mainly carnivorous |
|
Agonum fuliginosum (Panzer, 1809) |
wet forests (incl. floodplains) |
intermediate c |
carnivorous |
Collembola |
Agonum gracile (Gyllenhal, 1827) |
oligotrophic or mesotrophic mires |
stenotopic a |
mainly carnivorous |
|
Agonum piceum (Linnaeus, 1758) |
eutrophic mires |
stenotopic a |
mainly carnivorous |
|
Agonum sexpunctatum (Linnaeus, 1758) |
oligotrophic or mesotrophic mires |
intermediate c |
mainly carnivorous |
|
Agonum thoreyi Dejean, 1828 |
eutrophic mires |
intermediate c |
mainly carnivorous |
|
Agonum versutum (Gyllenhal, 1827) |
eutrophic mires |
intermediate c |
mainly carnivorous |
|
Agonum viduum (Panzer, 1797) |
eutrophic mires |
stenotopic a |
mainly carnivorous |
|
Amara aenea (De Geer, 1774) |
dry grasslands |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara aulica (Panzer, 1797) |
ruderal sites (incl. fallows) |
intermediate c |
herbivorous |
seeds |
Amara bifrons (Gyllenhal, 1810) |
ruderal sites (incl. fallows) |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara brunnea (Gyllenhal, 1810) |
drier deciduous or coniferous
forests |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara communis (Panzer, 1797) |
fresh, intensively managed meadows
or pastures |
eurytopic b |
herbivorous |
seeds |
Amara consularis (Duftschmid, 1812) |
arable land |
intermediate c |
herbivorous |
seeds |
Amara convexior Stephens, 1828 |
dry grasslands |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara familiaris (Duftschmid, 1812) |
arable land |
intermediate c |
herbivorous |
seeds |
Amara lunicollis Schiödte, 1837 |
dry grasslands |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara ovata (Fabricius, 1792) |
moist deciduous forests |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara plebeja (Gyllenhal, 1810) |
arable land |
eurytopic b |
herbivorous |
seeds |
Amara similata (Gyllenhal, 1810) |
arable land |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara spreta Dejean, 1831 |
arable land |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Amara tibialis (Paykull, 1798) |
dry grasslands |
intermediate c |
herbivorous, carnivorous |
seeds, soft roots, insects, small worms |
Anisodactylus binotatus (Fabricius, 1787) |
unmanaged moist or wet meadows |
intermediate c |
unclear |
|
Anthracus consputus (Duftschmid, 1812) |
eutrophic mires |
intermediate c |
unclear |
|
Badister bullatus (Schrank, 1798) |
drier deciduous or coniferous
forests |
intermediate c |
unclear |
|
Badister dilatatus Chaudoir, 1827 |
oligotrophic or mesotrophic mires |
intermediate c |
unclear |
|
Badister lacertosus Sturm, 1815 |
moist deciduous forests |
intermediate c |
unclear |
|
Badister sodalis (Duftschmid, 1812) |
unmanaged moist or wet meadows |
intermediate c |
unclear |
|
Bembidion articulatum (Panzer, 1796) |
unmanaged moist or wet meadows |
intermediate c |
unclear |
d |
Bembidion assimile Gyllenhal, 1810 |
eutrophic mires |
intermediate c |
unclear |
d |
Bembidion biguttatum (Fabricius, 1779) |
eutrophic mires |
intermediate c |
unclear |
d |
Bembidion doris (Panzer, 1797) |
oligotrophic or mesotrophic mires |
intermediate c |
unclear |
d |
Bembidion gilvipes Sturm, 1825 |
unmanaged moist or wet meadows |
intermediate c |
unclear |
d |
Bembidion guttula (Fabricius, 1792) |
eutrophic mires |
intermediate c |
unclear |
d |
Bembidion humerale Sturm, 1825 |
oligotrophic or mesotrophic mires |
stenotopic a |
unclear |
d |
Bembidion lampros (Herbst, 1784) |
arable land |
intermediate c |
unclear |
d |
Bembidion mannerheimii C.R. Sahlberg, 1827 |
wet forests (incl. floodplains) |
intermediate c |
unclear |
d |
Bembidion properans Stephens, 1829 |
arable land |
intermediate c |
unclear |
d |
Bembidion tetracolum Say, 1823 |
arable land |
intermediate c |
unclear |
d |
Bembidion varium (Olivier, 1795) |
vegetationless river banks |
intermediate c |
carnivorous |
Nematoda, insect larvae |
Blethisa multipunctata (Linnaeus, 1758) |
eutrophic mires |
intermediate c |
unclear |
|
Bradycellus csikii Laczó, 1912 |
ruderal sites (incl. fallows) |
intermediate c |
unclear |
|
Bradycellus harpalinus (Serville, 1821) |
oligotrophic or mesotrophic mires |
intermediate c |
herbivorous |
seeds |
Broscus cephalotes (Linnaeus, 1758) |
arable land |
intermediate c |
carnivorous |
|
Calathus fuscipes (Goeze, 1777) |
ruderal sites (incl. fallows) |
intermediate c |
herbivorous |
seeds, germinating pine seeds |
Calathus melanocephalus (Linnaeus, 1758) |
ruderal sites (incl. fallows) |
intermediate c |
herbivorous |
seeds |
Calathus micropterus (Duftschmid, 1812) |
drier deciduous or coniferous
forests |
stenotopic a |
unclear |
|
Calathus rotundicollis Dejean, 1828 |
moist deciduous forests |
intermediate c |
unclear |
|
Carabus granulatus Linnaeus, 1758 |
wet forests (incl. floodplains) |
eurytopic b |
carnivorous |
insects, larvae |
Carabus hortensis Linnaeus, 1758 |
moist deciduous forests |
stenotopic a |
carnivorous |
insects, snails, fresh carrion |
Carabus nemoralis O.F. Müller, 1764 |
moist deciduous forests |
intermediate c |
carnivorous, herbivorous |
insects, snails, worms, fresh fruit |
Carabus violaceus Linnaeus, 1758 |
drier deciduous or coniferous
forests |
intermediate c |
mainly carnivorous |
snails, fresh carrion, mushrooms |
Chlaenius nigricornis (Fabricius, 1787) |
eutrophic mires |
stenotopic a |
unclear |
|
Chlaenius tristis (Schaller, 1783) |
eutrophic mires |
stenotopic a |
unclear |
|
Clivina fossor (Linnaeus, 1758) |
arable land |
intermediate c |
mainly carnivorous |
|
Cychrus caraboides (Linnaeus, 1758) |
moist deciduous forests |
intermediate c |
carnivorous |
snails, worms |
Dromius sigma (Rossi, 1790) |
wet forests (incl. floodplains) |
intermediate c |
unclear |
|
Dyschirius aeneus (Dejean, 1825) |
vegetationless river banks |
stenotopic a |
carnivorous |
Staphilinidae and their larvae |
Dyschirius globosus (Herbst, 1783) |
wet forests (incl. floodplains) |
eurytopic b |
carnivorous |
Staphilinidae and their larvae |
Dyschirius luedersi Wagner, 1915 |
eutrophic mires |
intermediate c |
carnivorous |
Staphilinidae and their larvae |
Elaphrus cupreus Duftschmid, 1812 |
wet forests (incl. floodplains) |
intermediate c |
carnivorous |
|
Elaphrus riparius (Linnaeus, 1758) |
vegetationless river banks |
stenotopic a |
carnivorous |
|
Elaphrus uliginosus Fabricius, 1775 |
eutrophic mires |
intermediate c |
carnivorous |
|
Epaphius rivularis (Gyllenhal, 1810) |
oligotrophic or mesotrophic mires |
intermediate c |
unclear |
|
Epaphius secalis (Paykull, 1790) |
wet forests (incl. floodplains) |
stenotopic a |
unclear |
|
Harpalus affinis (Schrank, 1781) |
arable land |
intermediate c |
herbivorous |
seeds of deciduous and coniferous trees |
Harpalus anxius (Duftschmid, 1812) |
dry grasslands |
intermediate c |
mainly herbivorous |
|
Harpalus distinguendus (Duftschmid, 1812) |
arable land |
stenotopic a |
herbivorous |
|
Harpalus latus (Linnaeus, 1758) |
fresh, intensively managed meadows
or pastures |
intermediate c |
mainly herbivorous |
|
Harpalus rufipalpis Sturm, 1818 |
dry grasslands |
intermediate c |
mainly herbivorous |
|
Harpalus signaticornis (Duftschmid, 1812) |
arable land |
intermediate c |
mainly herbivorous |
|
Harpalus smaragdinus (Duftschmid, 1812) |
dry grasslands |
intermediate c |
mainly herbivorous |
|
Harpalus tardus (Panzer, 1797) |
ruderal sites (incl. fallows) |
intermediate c |
herbivorous |
|
Harpalus xanthopus winkleri Schauberger,
1923 |
moist deciduous forests |
intermediate c |
mainly herbivorous |
|
Leistus ferrugineus (Linnaeus, 1758) |
drier deciduous or coniferous
forests |
intermediate c |
carnivorous |
Collembola |
Leistus rufomarginatus Duftschmid, 1812 |
moist deciduous forests |
intermediate c |
carnivorous |
Collembola |
Leistus terminatus (Hellwig in Panzer, 1793) |
oligotrophic or mesotrophic mires |
intermediate c |
carnivorous |
Collembola |
Loricera pilicornis (Fabricius, 1775) |
arable land |
eurytopic b |
carnivorous |
Collembola |
Microlestes minutulus (Goeze, 1777) |
ruderal sites (incl. fallows) |
intermediate c |
unclear |
|
Nebria brevicollis (Fabricius, 1792) |
moist deciduous forests |
eurytopic b |
carnivorous |
Collembola |
Notiophilus aquaticus (Linnaeus, 1758) |
dry grasslands |
stenotopic a |
carnivorous |
Collembola, mites |
Notiophilus biguttatus (Fabricius, 1779) |
moist deciduous forests |
intermediate c |
carnivorous |
Collembola, mites |
Notiophilus palustris (Duftschmid, 1812) |
wet forests (incl. floodplains) |
intermediate c |
carnivorous |
Collembola, mites |
Oodes helopioides (Fabricius, 1792) |
eutrophic mires |
intermediate c |
unclear |
|
Oxypselaphus obscurus (Herbst, 1794) |
wet forests (incl. floodplains) |
intermediate c |
unclear |
|
Panagaeus cruxmajor (Linnaeus, 1758) |
eutrophic mires |
stenotopic a |
unclear |
|
Patrobus assimilis Chaudoir, 1844 |
oligotrophic or mesotrophic mires |
stenotopic a |
unclear |
|
Patrobus atrorufus (Stroem, 1768) |
wet forests (incl. floodplains) |
intermediate c |
unclear |
|
Poecilus cupreus (Linnaeus, 1758) |
arable land |
intermediate c |
carnivorous |
|
Poecilus versicolor (Sturm, 1824) |
arable land |
intermediate c |
carnivorous |
|
Pseudoophonus rufipes (De Geer, 1774) |
arable land |
intermediate c |
carnivorous, herbivorous |
|
Pterostichus anthracinus (Illiger, 1798) |
wet forests (incl. floodplains) |
intermediate c |
carnivorous |
|
Pterostichus aterrimus (Herbst, 1794) |
oligotrophic or mesotrophic mires |
stenotopic a |
carnivorous |
|
Pterostichus diligens (Sturm, 1824) |
oligotrophic or mesotrophic mires |
intermediate c |
carnivorous |
|
Pterostichus guentheri Sturm, 1824 |
eutrophic mires |
intermediate c |
carnivorous |
|
Pterostichus melanarius (Illiger, 1798) |
fresh, intensively managed meadows
or pastures |
eurytopic b |
carnivorous, herbivorous |
insects, cereals, fruit |
Pterostichus minor (Gyllenhal, 1827) |
oligotrophic or mesotrophic mires |
intermediate c |
carnivorous |
|
Pterostichus niger (Schaller, 1783) |
moist deciduous forests |
eurytopic b |
carnivorous |
|
Pterostichus nigrita (Paykull, 1790) |
wet forests (incl. floodplains) |
intermediate c |
carnivorous |
|
Pterostichus oblongopunctatus (Fabricius,
1787) |
moist deciduous forests |
intermediate c |
carnivorous |
|
Pterostichus rhaeticus Heer, 1837 |
oligotrophic or mesotrophic mires |
intermediate c |
carnivorous |
|
Pterostichus strenuus (Panzer, 1797) |
moist deciduous forests |
intermediate c |
carnivorous, herbivorous |
insects, rotting plants |
Pterostichus vernalis (Panzer, 1796) |
unmanaged noist or wet meadows |
intermediate c |
carnivorous |
|
Stenolophus mixtus (Herbst, 1784-1785) |
eutrophic mires |
intermediate c |
unclear |
|
Stenolophus teutonus (Schrank, 1781) |
vegetationless river banks |
intermediate c |
unclear |
|
Stomis pumicatus (Panzer, 1796) |
moist deciduous forests |
intermediate c |
unclear |
|
Syntomus truncatellus (Linné, 1761) |
ruderal sites (incl. fallows) |
intermediate c |
unclear |
|
Synuchus vivalis (Illigier, 1798) |
ruderal sites (incl. fallows) |
intermediate c |
unclear |
|
Trechoblemus micros (Herbst, 1783) |
eutrophic mires |
intermediate c |
unclear |
|
Trechus obtusus Erichson, 1837 |
ruderal sites (incl. fallows) |
intermediate c |
unclear |
|
Trechus quadristriatus (Schrank, 1781) |
arable land |
intermediate c |
unclear |
|
Trichocellus placidus (Gyllenhal, 1827) |
wet forests (incl. floodplains) |
intermediate c |
unclear |
|
Zabrus tenebrioides (Goeze, 1777) |
arable land |
stenotopic a |
herbivorous, carnivorous |
cereals, young plants |
Appendix B.
Fuzzy model derived from main decision tree (Fig. 3a in Kampichler
& Platen 2004)
The table "Fuzzy sets" shows the intersection points of the set boarders
with the isolines "membership = 0" and "membership = 1". For example,
the triangle representing the fuzzy set "is_absent" for Agonum afrum
is is defined by the lower left point (0/0), the upper point (0/1) and
lower right point (1/0). In analogy, trapezoid sets are defined by four
points. The numbers in parentheses behind the names of the fuzzy sets
are used for listing the rules in the table "Rule base".
Table B.1. Fuzzy sets
Species |
Fuzzy Set |
Shape |
Points |
Agonum afrum |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Amara lunicollis |
is_rare_or_absent (1) |
triangle |
[0 0 4] |
|
is_present (2) |
trapezoid |
[0 4 500 500] |
Pterostichus diligens |
is_moderately_abundant_or_absent (1) |
trapezoid |
[0 0 10 50] |
|
is_abundant (2) |
trapezoid |
[10 50 110 176] |
|
is_very_abundant (3) |
trapezoid |
[110 176 1000 1000] |
Calathus micropterus |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Table B.2. Rule-base
Rule no. |
A. afrum |
A. lunicollis |
P. diligens |
C. micropterus |
Degradation stage |
1 |
2 |
1 |
1 |
1 |
1 |
2 |
2 |
1 |
1 |
2 |
1 |
3 |
2 |
1 |
2 |
1 |
2 |
4 |
2 |
1 |
2 |
2 |
4 |
5 |
2 |
1 |
3 |
1 |
3 |
6 |
2 |
1 |
3 |
2 |
3 |
7 |
2 |
2 |
1 |
1 |
5 |
8 |
2 |
2 |
1 |
2 |
5 |
9 |
2 |
2 |
2 |
1 |
5 |
10 |
2 |
2 |
2 |
2 |
5 |
11 |
2 |
2 |
3 |
1 |
5 |
12 |
2 |
2 |
3 |
2 |
5 |
13 |
1 |
1 |
1 |
1 |
5 |
14 |
1 |
1 |
2 |
1 |
5 |
15 |
1 |
1 |
2 |
2 |
5 |
16 |
1 |
1 |
2 |
2 |
5 |
17 |
1 |
1 |
3 |
1 |
5 |
18 |
1 |
1 |
3 |
2 |
5 |
19 |
1 |
2 |
1 |
1 |
5 |
20 |
1 |
2 |
1 |
2 |
5 |
21 |
1 |
2 |
2 |
1 |
5 |
22 |
1 |
2 |
2 |
2 |
5 |
23 |
1 |
2 |
3 |
1 |
5 |
24 |
1 |
2 |
3 |
2 |
5 |
For example, rule 1 is to be read as
IF Agonum afrum is_present AND IF Amara lunicollis is_rare_or_absent AND IF Pterostichus diligens is_moderately_abundant_or_absent AND IF Calathus micropterus is_absent THEN moor belongs to degradation stage 1.
Appendix C.
Fuzzy model derived from first additional decision tree (boosting)
(Fig. 3b in Kampichler & Platen 2004). See explanations in
Appendix B
.
Table C.1. Fuzzy sets
Species |
Fuzzy set |
Shape |
Points |
Chlaenius nigricornis |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Agonum afrum |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Pterostichus diligens |
is_moderately_abundant_or_absent (1) |
trapezoid |
[0 0 10 50] |
|
is_abundant (2) |
trapezoid |
[10 50 110 176] |
|
is_very_abundant (3) |
trapezoid |
[110 176 1000 1000] |
Bradycellus harpalinus |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Table C.2. Rule-base
Rule no. |
C. nigricornis |
A. afrum |
P. diligens |
B. harpalinus |
Degradation stage |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
1 |
1 |
2 |
1 |
3 |
1 |
1 |
2 |
1 |
4 |
4 |
1 |
1 |
2 |
2 |
2 |
5 |
1 |
1 |
3 |
2 |
3 |
6 |
1 |
2 |
1 |
1 |
5 |
7 |
1 |
2 |
1 |
1 |
5 |
8 |
1 |
2 |
1 |
2 |
5 |
9 |
1 |
2 |
2 |
1 |
5 |
10 |
1 |
2 |
2 |
2 |
5 |
11 |
1 |
2 |
3 |
1 |
5 |
12 |
1 |
2 |
3 |
2 |
5 |
13 |
2 |
1 |
1 |
1 |
3 |
14 |
2 |
1 |
1 |
2 |
3 |
15 |
2 |
1 |
2 |
1 |
3 |
16 |
2 |
1 |
2 |
2 |
3 |
17 |
2 |
1 |
3 |
2 |
3 |
18 |
2 |
1 |
3 |
2 |
3 |
19 |
2 |
2 |
1 |
1 |
3 |
20 |
2 |
2 |
1 |
2 |
3 |
21 |
2 |
2 |
2 |
1 |
3 |
22 |
2 |
2 |
2 |
2 |
3 |
23 |
2 |
2 |
3 |
1 |
3 |
24 |
2 |
2 |
3 |
2 |
3 |
Appendix D.
Fuzzy model derived from second additional decision tree (boosting)
(Fig. 3c in Kampichler & Platen 2004). See explanations in
Appendix B
.
Table D.1. Fuzzy sets
Species |
Fuzzy set |
Shape |
Points |
Amara consularis |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Synuchus vivalis |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Chlaenius nigricornis |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Calathus micropterus |
is_absent (1) |
triangle |
[0 0 1] |
|
is_present (2) |
trapezoid |
[0 1 500 500] |
Oxypselaphus obscurus |
is_rare_or_absent (1) |
trapezoid |
[0 0 4 10] |
|
is_present (2) |
trapezoid |
[4 10 500 500] |
Table D.2. Rule-base
Rule no. |
A. consularis |
S. vivalis |
C. nigricornis |
C. micropterus |
P. obscurus |
Degradation stage |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
2 |
1 |
1 |
1 |
1 |
2 |
3 |
3 |
1 |
1 |
1 |
2 |
1 |
1 |
4 |
1 |
1 |
1 |
2 |
2 |
2 |
5 |
1 |
1 |
2 |
1 |
1 |
2 |
6 |
1 |
1 |
2 |
1 |
2 |
2 |
7 |
1 |
1 |
2 |
2 |
1 |
2 |
8 |
1 |
1 |
2 |
2 |
2 |
2 |
9 |
1 |
2 |
1 |
1 |
1 |
4 |
10 |
1 |
2 |
1 |
1 |
2 |
4 |
11 |
1 |
2 |
1 |
2 |
1 |
4 |
12 |
1 |
2 |
1 |
2 |
2 |
4 |
13 |
1 |
2 |
2 |
1 |
1 |
4 |
14 |
1 |
2 |
2 |
1 |
2 |
4 |
15 |
1 |
2 |
2 |
2 |
1 |
4 |
16 |
1 |
2 |
2 |
2 |
2 |
4 |
17 |
2 |
1 |
1 |
1 |
1 |
3 |
18 |
2 |
1 |
1 |
1 |
2 |
3 |
19 |
2 |
1 |
1 |
2 |
1 |
3 |
20 |
2 |
1 |
1 |
2 |
2 |
3 |
21 |
2 |
1 |
2 |
1 |
1 |
3 |
22 |
2 |
1 |
2 |
1 |
2 |
3 |
23 |
2 |
1 |
2 |
2 |
1 |
3 |
24 |
2 |
1 |
2 |
2 |
2 |
3 |
25 |
2 |
2 |
1 |
1 |
1 |
3 |
26 |
2 |
2 |
1 |
1 |
2 |
3 |
27 |
2 |
2 |
1 |
2 |
1 |
3 |
28 |
2 |
2 |
1 |
2 |
2 |
3 |
29 |
2 |
2 |
2 |
1 |
1 |
3 |
30 |
2 |
2 |
2 |
1 |
2 |
3 |
31 |
2 |
2 |
2 |
2 |
1 |
3 |
32 |
2 |
2 |
2 |
2 |
2 |
3 |