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1. Introduction

Since the report of the World Commission of Environment and
Development (1987), better known as the ‘‘Brundtland Report’’,
and the UN Conference on Environment and Development (1992)
in Rio de Janeiro, the concept of sustainability has gained
worldwide acceptance and popularity. It is generally agreed that
sustainability indicators are necessary to put the sustainability
concept into effect and to introduce it into government policies.
There is an abundance of literature on holistic indicators for
sustainable development as well as on indicators for specific

dimensions of sustainability, for example, the environmentally
sound management of a variety of natural resources such as
forestry, agriculture and animal production (the works of Büchs,
2003; Mendoza and Prabhu, 2003; Karlen et al., 2004; Gamborg
and Sandøe, 2005; OECD, 2008 are but a few).

However, it is only recently that practical tools which can help
local users to apply these general concepts at the local to regional
levels have emerged (Hurni, 2000). Land evaluation and land-use
decisions on a local scale are instead often based on the opinion of
local experts, as opposed to the formal application of indicators or
decision support systems for environmentally sound resource
management. This is particularly evident in the tropics where, due
to restricted access to modern communication and information
technologies, local decision makers rely on the expertise of local
academics, forest managers, cattle breeders and/or farmers.
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A B S T R A C T

Despite abundant literature on indicators for sustainable resource management, practical tools to help

local users to apply its general concepts at a local to regional level are scarce. This means that decisions

over land evaluation and land use at a local level are often not based on the formal application of

indicators or decision support systems for environmentally sound management but instead on the

opinion of local expertise, for instance forest managers, cattle breeders, farmers and/or academics. This is

particularly seen to be the case in the tropics where access to modern communication and information

technologies is restricted.

As the opinions of experts are often based on and influenced by personal experience, intuition,

heuristics and bias, their evaluations and decision are often unclear to the non-expert working at a local

level. In order to make their reasoning more comprehensible to the non-expert, the ecological condition

of 176 plots in the tropical Southeast of Mexico were evaluated by experts on soil fertility, forest

management, cattle breeding and agriculture. With the assistance of a knowledge engineer (one who

converts expert knowledge and reasoning into a model), these expert opinions and reasoning were then

translated into a formal computer model.

As an alternative approach we applied a knowledge discovery technique, namely the induction of

regression trees and automatically developed models using the expert evaluations as training data.

Where knowledge engineering was tedious and time consuming, regression models could be rapidly

generated. Moreover, the correspondence between regression trees and expert opinions was

considerably higher than the correspondence between expert opinion and their own models. The

regression trees used less explicative variables than the models generated by the experts. The

minimisation of sampling effort due to variable space reduction means that the application of regression

tree induction has a high potential for a rapid development of indicators for narrowly defined ecological

assessments, needed for decision making on a local or regional scale.
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However, similar problems arise even in developed countries;
Sutherland et al. (2004) reported that more than 75% of the
knowledge sources consulted for conservation management
actions in a UK nature reserve are based on common sense and
personal experience, rather than scientific evidence.

If the domain expert’s reasoning is to be understood by
decision-makers and users it must first be translated into a formal
model which will typically, but not necessarily take the form of a
computer programme. Two key parts in the development of a
formal model are ‘knowledge acquisition’ (Finlay and Dix, 1996),
the gleaning of knowledge from domain experts which will be
required by the knowledge engineer in the formation of a formal
model and ‘knowledge engineering’ (Medsker and Liebowitz,
1994), the process of designing, developing, testing and imple-
menting a computer programme for a formal model. The
acquisition of knowledge from experts has proved to be a difficult
task as many expert system projects have shown, experts are
notoriously bad in communicating what they know in a formalised
manner. Also, checking the represented experts’ knowledge for
consistency and completeness, for example as a set of IF-THEN
rules, can be a laborious and time consuming task.

The development of a formal model will require several
interviews between the knowledge engineer and domain expert
in order to fill in any gaps in knowledge, resolve doubts and
confirm the model structure. Also, to facilitate clearer commu-
nication the expert must become familiar with at least a very basic
knowledge of the inference methods applied, fuzzy logic being one
example. This can lead to what is referred to in expert systems
literature as a ‘knowledge acquisition bottleneck’ (Medsker and
Liebowitz, 1994). To remedy this problem, ways in which expert
opinions can be automatically translated into a formal model have
been sought, for example, the application of learning algorithms to
automatically generate models from training data, a process called
machine learning or knowledge discovery. Recently, frameworks
have been proposed to aid researchers in designing fuzzy indices of
environmental conditions (Marchini et al., 2009); unfortunately
these were published too late to be applied in this study.

For the purpose of this study all three strategies were applied,
expert opinion for evaluating land use types, knowledge engineering
by converting the reasoning of the domain experts into a formalised
model and knowledge discovery by automatically inducing a model
using the domain expert’s opinion as training cases.

Firstofall,usingonedomainexpertforeachlanduseandsoil type,
evaluations were made on a number of sites based on a set of primary
indicators chosen by each expert. The experts then tried to explicitly
represent their reasoning in a hierarchical model that should predict
the ecological state of each site. This posed the question of whether
the end results would correspond with one another, as a synthetic
domain experts’ evaluation (based on experience and heuristics) will
not necessarily coincide with an analytical explanation, even when
both are provided by the same expert.

Finally, to discover how far an automated time saving
procedure could replace the difficult time consuming process of
knowledge acquisition, the evaluations made by each domain
expert were used as training data in the automated induction of
regression trees. It was also necessary to find out whether the
automatically induced model would contain every primary
indicator chosen by the domain expert, or if some of them would
become redundant.

The two questions addressed in this paper are: (1) Do the
predictions of formal models, based on the knowledge and
experience of domain experts, actually correspond to the evalua-
tions made by the same experts? (2) Can time-saving machine
learning methods be used to develop evaluation models and, if so,
how do they correspond to the models developed by the domain
experts?

2. Materials and methods

We evaluated the ecological state of forested sites, cattle-
breeding ranches and agricultural areas, as well as the soils in the
State of Tabasco, SE Mexico, a region which has undergone drastic
land use changes in the last few decades, such as the conversion of
tropical forest to cattle-breeding areas (Challenger, 1998). We
randomly chose 176 sites distributed in the municipalities
Balancán and Tenosique in the east of Tabasco (178150–188100N,
918010–918460W) (Fig. 1) comprising an area of 5474 km2. The
region is characterized by a warm (mean annual temperature
26 8C) and humid climate with precipitation throughout the whole
year (1750 mm annual precipitation) (INEGI, 2001). The region is
mainly a plain (67% of area, elevation <20 m a.s.l.) with hills (29%,
20–200 m a.s.l.) and mountains (4%, max. 640 m a.s.l.) located in
the southern part. The dominant soils are Gleysols over alluvial
sediments (plain), Vertisols, Cambisols, Luvisols and Acrisols over
Miocene or Oligocene sediments (hills) and Leptosols and Regosols
over limestone (mountains) (INEGI, 1985). The two municipalities
have suffered dramatic changes of land cover during the last 60
years. While in 1950 the very sparsely populated region still was
dominated by various types of tropical rainforest, by 2003 only
about 10% of forests (including secondary forests) were left (Isaac-
Márquez, 2008), mainly in the less accessible mountainous areas.
Due to governmental programs of subsidies for cattle ranching, the
percentage of grassland has increased to 78% (Casco, 1980; Tudela,
1989; Isaac-Márquez et al., 2008). Annual and perennial crops
cover approximately 4% of the study region; the remainder consists
mainly of wetlands and temporarily flooded areas.

Each site corresponded to a plot of homogenous land use. Four
domain experts of forestry (SO-G, BdJ1), cattle-breeding (SH-D),
agriculture (EH-L) and pedology (VG) had the task to evaluate land
use on these sites. In particular, forested plots were evaluated with
regard to structure, composition and perturbations, grazing cattle
and agricultural plots with regard to the ecological sustainability of
the actual site management, and soils on all plots with regard to
soil fertility. For ease of communication, we refer to each of the four
evaluations as an index of ecological condition in the remainder of
this paper.

Based on personal knowledge and experience, each expert
chose a number of primary indicators that in his or her opinion
would satisfy the purpose of evaluating ecological condition. Their
values were determined in the field between March and December
2004. Non-numeric primary indicators were scaled from 0 to 1,

Fig. 1. Location of the Mexican State of Tabasco and the municipalities Balancán and

Tenosique.

1 Author initials.
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where 0 represented ‘‘disastrous’’ and 1 represented ‘‘excellent’’.
Based on the primary indicators and expertise, each domain expert
evaluated ecological condition on each site on a scale from 0 to 1
(0: very bad; 1: very good).

Subsequently, each domain expert was asked to represent his
reasoning in an explicit model, supported by a knowledge-
engineer who himself is an ecologist (CK1). The experts should
mould their ways of evaluating the sites into a hierarchical
structure, aggregating two or more primary indicators at a time to
higher level intermediate variables, and finally aggregating the
intermediate variables into an index of ecological condition. The
hierarchical structure was chosen (a) in order to support the
domain experts in structuring their ecological reasoning, (b) in
order to reduce rule-complexity at each aggregation level (see
below). The methods applied in indicator aggregation were:

(a) simple mathematical algorithms (average, weighed average,
minimum, maximum). For example, if primary indicator A = a

and primary indicator B = b, then the value x of the
intermediate variable X is determined as x = (a + b)/2 or as
x = (w1*a + w2*b)/(w1 + w2), where w1 and w2 are weights, or as
x = min(a, b) or x = max(a, b).

(b) a set of IF-THEN rules in the case of non-linear interactions
between two or more indicators at an ordinal scale. For
example, if primary indicator A can have the discrete values a1,
a2 and a3, and primary indicator B can have the discrete values
b1, b2 and b3, then the value x of the intermediate variable X is
determined by a set of nine rules (Table 1).

(c) a fuzzy rule-based model in the case of non-linear interactions
between two or more indicators at a continuous numerical
scale or at an ordinal scale with a large number of possible
values. For example, if both primary indicators A and B can have
numerical values from 0 to 1, then the value x of the
intermediate variable X is determined by a set of rules and
by fuzzy sets representing the linguistic variables ‘‘low A’’,
‘‘medium A’’, ‘‘high A’’, ‘‘low B’’, ‘‘medium B’’, ‘‘high B’’ as well as
the output ‘‘low X’’, ‘‘medium X’’, ‘‘high X’’ (Fig. 2, Table 1).

While in classic set theory an object can only either be a
member (membership = 1) or not be a member (membership = 0)
of a given set, the central idea of fuzzy set theory is that a member
of a set may have partial membership, which consequently may
possess all possible values between 0 and 1. The closer the
membership of an element is to 1, the more it belongs to the set;
the closer the membership of an element is to 0, the less it belongs
to the set. The value a = 0.4 of primary indicator A in Fig. 2, for
example, has higher membership in the set ‘‘a is medium’’ than in
the set ‘‘a is low’’; it does not belong at all to the set ‘‘a is high’’. The
determination of the model output consists of three steps: First,
the observed values of the primary indicators are translated into
membership values in the fuzzy sets (called fuzzification); second,
the memberships of the consequence of the applying rules in the
fuzzy sets of the intermediate variable X are calculated (called fuzzy

inference); third, the fuzzy result is converted into a discrete
numerical output (called defuzzification) (see Bothe, 1995 or
Zimmermann, 1996 for an introduction to fuzzy models). Fuzzy
rule-based models have become comparably popular in ecological
modelling (Li and Rykiel, 1996; Salski, 1996) and there exist
various examples in the context of evaluation, bioindication and
sustainable management (for example, Mendoza and Prabhu,
2003; Kampichler and Platen, 2004).

The hierarchical structure of the model helps to keep the rule-
bases as simple as possible. Assume three primary indicators, A, B

and C, with three levels each, that are to be aggregated to an index
I: direct aggregation needs 33 = 27 rules with three antecedents
each, whereas the aggregation of A and B to intermediate variable X

and the aggrgeation of X and C to index I requires only 32 + 32 = 18
rules with only two antecedents each.

The expert evaluations of soil quality and ecological condition
of forest, agricultural and cattle-ranching systems were used as
training cases in order to induce regression trees (Breiman et al.,
1998) using the primary indicators as independent variables and
expert evaluation as the dependent variable. Regression trees are
based on the assumption that the relationship between indepen-
dent and dependent variables is not constant over the entire range

Fig. 2. Example of fuzzy sets. Primary indicators A and B are structured into three triangular sets each, representing ‘‘low’’, ‘‘medium’’ and ‘‘high’’ values; the values ‘‘low’’,

‘‘medium’’ and ‘‘high’’ of output variable X are represented by singletons.

Table 1
Structure of rule-based and fuzzy-rule based aggregation of primary indicators A and B to intermediate variable X.

Rule Rule-based Fuzzy rule-based

if A = and if B = then X = if A = and if B = then X =

1 a1 b1 x1 Low Low Low, medium or high

2 a1 b2 x2 Low Medium Low, medium or high

3 a1 b3 x3 Low High Low, medium or high

4 a2 b1 x4 Medium Low Low, medium or high

5 a2 b2 x5 Medium Medium Low, medium or high

6 a2 b3 x6 Medium High Low, medium or high

7 a3 b1 x7 High Low Low, medium or high

8 a3 b2 x8 High Medium Low, medium or high

9 a3 b3 x9 High High Low, medium or high

C. Kampichler et al. / Ecological Indicators 10 (2010) 320–329322
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Fig. 3. Model structure for the evaluation of ecological condition of three land-use systems and the soil developed by domain experts with the help of an knowledge-engineer:

forest systems (A), cattle breeding systems (B), agricultural systems (C), soil (D). Primary indicators are shaded in grey. Circles represent simple mathematic algorithms, white

triangles represent rule sets, and grey triangles represent rule sets based on fuzzy logic.
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of possible variable values, but can be approximated in smaller
subdomains. Regression trees are thus constructed iteratively
splitting the data into homogeneous subsets, which results in a
tree-like structure where each branch is defined by a certain
range of values of the independent variables and the terminal
nodes of the tree consist of a predicted constant. Regression
trees are ideally suited for exploring data that exhibit non-
linearity and high-order interactions; in contrast to classifica-
tion trees they are, however, only occasionally used in ecological
data analysis (for example, Andersen et al., 2000; De’ath and
Fabricius, 2000; Kampichler et al., 2000; Džeroski and Drumm,
2003).

Personal expert evaluations and model outputs were compared
by calculating Spearman rank correlations as well as their mean
absolute deviations (MAD) calculated as

where xi,expert is the ecological condition of the ith site as evaluated
by the expert domain, xi,model is the ecological condition of the ith
site as predicted by the model, and n is the number of sites.
Personal expert evaluations and the regression trees were
compared in the same way. All statistical analyses were
performed with R (R Development Core Team, 2007); for

Fig. 3. (Continued ).
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regression tree induction we used the R package tree (Ripley,
2007).

3. Results

The domain experts chose between 8 (soils) and 20 (primary and
secondary forests) primary variables for their personal evaluations
of the sites. They aggregated the primary variables to an index of
ecological condition by means of between 5 (soils) and 15 (primary
and secondary forests) nodes generating between 4 and 14
intermediate variables (Fig. 3). Detailed descriptions of each model
(justification for variable choice and variable aggregation, specific
algorithms used in each model node, rule sets, fuzzy sets) will be
published elsewhere (Hernández-Daumás et al., submitted for
publication; Ochoa-Gaona et al., submitted for publication).

There were noteworthy differences between the experts’
opinions and the outputs of their models (Fig. 4). The Spearman
correlation coefficient could be as low as 0.417 and the mean
absolute deviation between expert opinion and the ecological
condition index as calculated by the model attained values as high
as 0.279 (Table 2).

All regression trees (Fig. 5) included considerably less primary
variables than chosen by the domain experts. Numbers of
variables used dropped from 20 to 5 (primary and secondary
forests), from 9 to 5 (cattle ranching), from 12 to 4 (agriculture)
and from 8 to 5 (soils) (Table 2). Nonetheless, there was higher
correspondence between expert opinion and regression trees
(Fig. 6) than between expert opinion and their own models with
considerable higher correlation coefficients and considerable
lower MADs (Table 2).

Table 2
Comparison between expert opinion and expert model. All Spearman rank correlation coefficients are statistically significant at p < 0.001.

Knowledge domain Comparison between expert

opinion and expert model

Comparison between expert

opinion and regression tree

Variable reduction

by regression tree

rSpearman MADa rSpearman MADa

Primary and secondary forests 0.825 0.126 0.942 0.044 75%

Cattle-breeding 0.417 0.188 0.842 0.052 44%

Agriculture 0.591 0.272 0.746 0.057 67%

Soil 0.495 0.279 0.901 0.069 38%

a MAD, mean absolute deviation.

Fig. 4. Comparison between the expert evaluations of the ecological condition of three land-use systems and the soil and the output of the correspondent models developed by

domain experts: Forest systems (A), cattle ranching systems (B), agricultural systems (C), soil (D). Ecological condition is scaled between 0 (very bad) and 1 (very good).

C. Kampichler et al. / Ecological Indicators 10 (2010) 320–329 325
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4. Discussion

Human experts are human beings, and as with all humans, their
decisions are influenced by personal experience, intuition,
heuristics and bias. Thus, experts of the same knowledge domain
often disagree on the relative importance of different evaluation
criteria (Weisberg et al., 2008). Uncertainty or vagueness of how to
rate the importance of every possible explanatory variable might
motivate domain experts to choose a high number of primary
indicators, obviously obeying a rule of thumb such as ‘‘better
measure a few variables too many than to miss an important
factor’’. Regression trees reduced the number of primary indicators

considerably, at least by 38%. Since expert opinion served as
database for their training, regression trees yielded results
corresponding closely to the expert’s evaluation but were more
parsimonious in terms of necessary variables. Thus, the automated
induction of regression trees seems to be a promising way to
develop indicators for narrowly defined ecological assessments as
needed for decision-making at the local or regional scale. A two-
stage procedure – first stage: primary indicator selection by a local
domain expert, preliminary sampling, expert evaluation, induction
of a regression-tree trained by the expert evaluation results;
second stage: comprehensive sampling taking into account only
the narrowed indicator set – could reduce considerably the time

Fig. 5. Regression trees for the evaluation of ecological condition of three land-use systems and the soil trained by the expert evaluation results: Forest systems (A), cattle

ranching systems (B), agricultural systems (C), soil (D). Ecological condition is scaled between 0 (very bad) and 1 (very good). aDBH, diameter in breast height; brelative value

ranging from 0 to 5 considering presence of at least two types from (i) scattered, (ii) riparian, (iii) live fences and (iv) other important trees, one of them has to be (i) or (ii) in a

well developed canopy; cCEC, cation exchange capacity.

C. Kampichler et al. / Ecological Indicators 10 (2010) 320–329326
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spent in the field for sampling and data acquisition. A reduction of
variables by 75% such as in the case of primary and secondary
forests could allow for the multiplication of sample size without
increasing project expenditure, thus producing more data and
higher statistical power.

Model development by the domain experts themselves
obviously had a serious drawback: in all cases, the model outputs
were not as close to their personal evaluations as were the results
of regression tree induction. Initial expert doubts on the validity of
the trees could easily be resolved. For example, the expert on
cattle-ranching systems observed the condensation of the values of
the ecological condition index to a narrower range from [0.22 0.73]
in the expert’s evaluation to [0.28 0.63] in the regression tree
(Fig. 6B). This reflects the problem of assigning values to a few
extreme plots (very good and very bad ones); while the tree yields
values that corresponded well with the experts evaluation, the
experts evaluation and the model did not as shown by their
quartiles (expert evaluation: 0.39, 0.46, 0.56; expert model: 0.20,
0.35, 0.49; regression tree: 0.40, 0.46, 0.58).

Moreover, machine learning methods have the potential to
improve ecological knowledge. Džeroski et al. (1997), for
example, reported how classification tree induction enhanced
knowledge on the role of several bioindicator taxons in Slovenian
rivers. The experts’ opinions on the regression trees generated in
this study were conflicting. Some aspects of the trees were
positively recognised, others caused contradiction. For example,
the forest experts acknowledged the primary bifurcation in the
corresponding regression tree (Dominance of trees with diameter
in breast height >11–20 cm; Fig. 5A), but doubted the validity of
the second bifurcation (shrub layer <50% vs. >50%). Also, the
expert on cattle-ranching systems was surprised by the fact that
the sole presence of electric fences should be sufficient to qualify a
plot as comparably good (index of ecological condition = 0.63, see
Fig. 5B). This conflict most probably arises due to the fact that

experts intent to find relationships between primary variables
and ecological condition which are generally valid and not
restricted to the study area, whereas tree induction yields
relationships valid specifically for the training set of cases. So
while the dominance of the shrub layer is generally not a valid
approach to distinguish between better and worse ecological
condition (for example, mature rainforests with a high and closed
canopy normally have a little developed shrub layer, so a lack of
the shrub layer does not always mean low quality), it may well be
so for the restricted number of observations made in the study
area. Likewise, the presence of electric fences is not a necessary
trait of ecologically sound cattle-ranching systems; in the study
area they might be a valuable indicator of the application of best
practices in rangeland management. This underpins the potential
of rapidly developed regression trees for variable selection and
minimisation of time and money expenditure for sampling at the
local or regional scale; however, for the development of
generalisable models, expert knowledge and experience is
indispensable (except when a huge database collected at a larger
scale should be available).

The standard for the evaluation of the experts’ models and the
regression trees in this study were the personal evaluations made
by the experts themselves. Experts may be wrong, however, and
there exists the possibility that their models, based on explicit
reasoning, reflect the situation in the real world better than their
synthetic expert opinion does which might be susceptible to
subjectivity and bias. The suggested procedure ‘‘expert evaluation
– regression-tree induction – sampling based on narrowed
indicator-set’’ could be made more robust by consulting a group
of local experts and applying Delphi methodology (Bowles, 1999;
Rowe and Wright, 1999; Linstone and Turoff, 2002) in the stages of
primary variable selection and personal plot evaluation; regres-
sion-trees based on personal evaluation averaged across a number
of experts will suffer less danger of being biased due to expert

Fig. 5. (Continued ).
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subjectivity which as we know can be considerable (Weisberg
et al., 2008).

5. Conclusions

Knowledge engineering, i.e., the conversion of expert opinion
into a formal model of decision making, was tedious and time
consuming in comparison with the knowledge discovery approach,
i.e., the automated induction of regression-trees. Moreover, the
correspondence between regression tree output and expert
opinion was considerably higher than the correspondence
between expert opinion and the experts’ own models, despite
the trees used being only a subset of the primary variables. The
application of regression tree induction, thus, has a high potential
for the rapid development of indicators for narrowly defined
ecological assessments as needed for decision-making at the local
or regional scale and for the minimisation of sampling effort due to
variable space reduction. Expert knowledge will still be indis-
pensable for the development of generalisable models valid at
larger spatial scales.
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Tabasco. Centro de Ecodesarrollo, Mexico, 72 pp.

Challenger, A., 1998. Utilización y Conservación de los Ecosistemas Terrestres de
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